

ELISAONE Cell Lysis Buffer (5X)

TGR BioSciences

Chemwatch: **5229-73** Version No: **2.1.1.1**

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **21/11/2016**Print Date: **06/11/2017**L.GHS.USA.EN

SECTION 1 IDENTIFICATION

Product Identifier

Product name	ELISAONE Cell Lysis Buffer (5X)
Synonyms	ELISA Lysis Buffer (5x)
Other means of identification	Not Available
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	TGR BioSciences
Address	31 Dalgleish St Thebarton SA 5031 Australia
Telephone	61 8 8354 6180
Fax	Not Available
Website	www.tgrbio.com
Email	info@tgrbio.com

Emergency phone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3

Label elements

Hazard pictogram(s)

SIGNAL WORD WARNING

Hazard statement(s)

H302	Harmful if swallowed.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.
H412	Harmful to aquatic life with long lasting effects.

Chemwatch: **5229-73** Page **2** of **14**

Version No: **2.1.1.1**

ELISAONE Cell Lysis Buffer (5X)

Issue Date: **21/11/2016**Print Date: **06/11/2017**

Not Applicable

Precautionary statement(s) Prevention

P280	Wear protective gloves/protective clothing/eye protection/face protection.
P261	Avoid breathing mist/vapours/spray.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P362	Take off contaminated clothing and wash before reuse.
P302+P352	IF ON SKIN: Wash with plenty of soap and water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P330	Rinse mouth.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7647-14-5	<=5	sodium chloride
7447-40-7	<=2.5	potassium chloride
7782-85-6	<=2.5	sodium phosphate, dibasic, heptahydrate
7778-77-0	<=2.5	potassium phosphate, monobasic
7758-16-9	<=2.5	sodium acid pyrophosphate
7681-49-4	<=2.5	sodium fluoride
13721-39-6	<=2.5	sodium orthovanadate
9002-93-1	<=2.5	p-tert-octylphenol ethoxylate
55965-84-9	<=0.5	isothiazolinones, mixed
	balance	Ingredients determined not to be hazardous

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Description of first aid meas	uies .
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be

Chemwatch: 5229-73 Page 3 of 14 Issue Date: 21/11/2016 Version No: 2.1.1.1

ELISAONE Cell Lysis Buffer (5X)

Print Date: 06/11/2017

- provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise

▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

for phosphate salts intoxication:

- All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.
- Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity.
- ▶ Treatment should take into consideration both anionic and cation portion of the molecule.
- All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored.

BAL has no apparent therapeutic benefit in vanadium poisoning but edetate calcium disodium and disodium catechol disulfonate are effective antidotes in animals.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Sampling Time Comments Vanadium in urine End of shift at end of workweek 50 ug/g creatinine SQ

SQ: Semi-quantitative determinant - interpretation may be ambiguous; should be used as a screening test or confirmatory test. Treat symptomatically.

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Special protective equipment	and precautions for fire-fighters
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Non combustible. Not considered to be a significant fire risk. Expansion or decomposition on heating may lead to violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposition may produce toxic fumes of: , , carbon dioxide (CO2) , hydrogen chloride , phosgene , hydrogen fluoride ,
	nitrogen oxides (NOx)

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

other pyrolysis products typical of burning organic material

See section 8

Environmental precautions

Chemwatch: 5229-73 Page 4 of 14 Issue Date: 21/11/2016 Version No: 2.1.1.1 Print Date: 06/11/2017

ELISAONE Cell Lysis Buffer (5X)

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCl). Glutathione has also been used to inactivate the isothiazolinones. Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before disposal. If contamination of drains or waterways occurs, advise emergency services. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling	 DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with moisture. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US NIOSH Recommended Exposure Limits (RELs)	sodium fluoride	Floridine, Sodium monofluoride	2.5 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other inorganic, solid fluorides (as F).]
US ACGIH Threshold Limit Values (TLV)	sodium fluoride	Fluorides, as F	2.5 mg/m3	Not Available	Not Available	TLV® Basis: Bone dam; fluorosis; BEI
US OSHA Permissible Exposure Levels (PELs) - Table Z1	sodium fluoride	Fluorides	2.5 mg/m3	Not Available	Not Available	(as F)
US OSHA Permissible Exposure Levels (PELs) - Table Z2	sodium fluoride	Fluoride as dust	2.5 mg/m3	Not Available	Not Available	(Z37.28-1969)

EMERGENCY LIMITS

1					
Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3	
sodium chloride	Chloride; (Chloride(1-); Chloride ions)	0.5 ppm	2 ppm	20 ppm	
potassium chloride	Potassium chloride	7.8 mg/m3	86 mg/m3	510 mg/m3	
potassium phosphate, monobasic	Potassium phosphate, monobasic	9.6 mg/m3	110 mg/m3	630 mg/m3	
sodium acid pyrophosphate	Sodium polyphosphate	9.2 mg/m3	100 mg/m3	600 mg/m3	
sodium acid pyrophosphate	Sodium hydrogen pyrophosphate	4.7 mg/m3	52 mg/m3	320 mg/m3	
sodium acid pyrophosphate	Sodium pyrophosphate, di-	4.3 mg/m3	48 mg/m3	290 mg/m3	

Chemwatch: **5229-73**Page **5** of **14**Issue Date: **21/11/2016**Version No: **2.1.1.1**Print Date: **06/11/2017**

ELISAONE Cell Lysis Buffer (5X)

sodium fluoride	Sodium fluoride		17 mg/m3	90 mg/m3	1,100 mg/m3
sodium orthovanadate	Sodium orthovanadate	Sodium orthovanadate		0.18 mg/m3	130 mg/m3
p-tert-octylphenol ethoxylate	Triton X-100; (Poly(oxyethylene)-p-tert-octylphenyl ether)		11 mg/m3	130 mg/m3	750 mg/m3
Ingredient	Original IDLH	Rev	vised IDLH		
sodium chloride	Not Available	Not Available			
potassium chloride	Not Available	Not	Not Available		
sodium phosphate, dibasic, heptahydrate	Not Available	Not Available			
potassium phosphate, monobasic	Not Available	Not	Not Available		
sodium acid pyrophosphate	Not Available	Not	Not Available		
sodium fluoride	250 mg/m3	Not	Not Available		
sodium orthovanadate	Not Available	Not	Not Available		
p-tert-octylphenol ethoxylate	Not Available	Not	Not Available		
isothiazolinones, mixed	Not Available	Not	Not Available		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

•

- ► Safety glasses with side shields.
- ▶ Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Eye and face protection

See Hand protection below

Chemwatch: 5229-73 Page 6 of 14 Issue Date: 21/11/2016 Version No: 2.1.1.1

ELISAONE Cell Lysis Buffer (5X)

Print Date: 06/11/2017

Wear chemical protective gloves, e.g. PVC.

Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ► Butyl rubber gloves
- ▶ Nitrile rubber gloves

Body protection

Hands/feet protection

See Other protection below

Other protection

- ▶ Overalls P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer*generated selection:

ELISAONE Cell Lysis Buffer (5X)

Material	СРІ
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NITRILE	С
PVC	С
##sodium	fluoride

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory: may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Chemwatch: 5229-73 Page **7** of **14** Issue Date: 21/11/2016 Version No: 2.1.1.1 Print Date: 06/11/2017

ELISAONE Cell Lysis Buffer (5X)

Appearance	Liquid; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Information on toxicological effects				
Inhaled	The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.			
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Isothiazolinones are moderately to highly toxic by oral administration. The major signs of toxicity were severe gastric irritation, lethargy, and ataxia			
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Aqueous solutions of isothiazolinones may be irritating or even corrosive depending on concentration. Solutions containing more than 0.5% (5000 ppm active substance) may produce severe irritation of human skin whilst solutions containing more than 100 ppm may irritate the skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.			
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Solutions containing isothiazolinones may produce corrosion of the mucous membranes and cornea. Instillation of 0.1 ml of an aqueous solution containing 560 ppm isothiazolinone into rabbit eye did not produce irritation whereas concentrations, typically around 3% and 5.5 %, were severely irritating or corrosive to the eye Symptoms included clouding of the cornea, chemosis and swelling of the eyelids.			
Chronic	Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Vanadium compounds are considered to have variable toxicity. Vanadium compounds act chiefly as an irritant to the conjunctivae and respiratory tract. Acute and chronic exposure can give rise to conjunctivitis, rhinitis, reversible irritation of the respiratory tract, and to bronchitis, bronchospasms, and asthma-like diseases in more severe cases. Industrial exposure are mostly acute, seldom chronic. (Sax, Dangerous Properties of Industrial Materials, eighth edition). Vanadium is thought to be an essential trace element with the required level in human nutrition thought to be very low. Feeding trials in humans conducted			

Chemwatch: **5229-73** Page **8** of **14**

Version No: **2.1.1.1**

ELISAONE Cell Lysis Buffer (5X)

Issue Date: 21/11/2016 Print Date: 06/11/2017

over 45-94 days (1575-8375 mg of ammonium vanadyl tartrate) produced gastrointestinal distress but no changes in clinical chemistry. Ingestion of 50 mg/day resulted in transient green discolouration of the tongue. Amongst workers in a vanadium refinery exposed at levels of up to 12 mg/m3 cases of respiratory irritation and chronic bronchitis have been described. Emphysema and intoxication was found in boiler cleaners (vanadium is found in soot generated in oil-burning facilities) where vanadium exposures ranged from 30-104 mg/m3. Vanadium exposed workers complain of significantly more wheezing than their matched controls although no differences appear in chest radiography, forced vital capacity (FCV) or FEV1 in workers exposed at levels of 0.1 to 3.9 mg/m3.

The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and dichlorinated compounds which share immunological cross-reactivity, the non-chlorinated isothiazolinones have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization depends on how contact with the product occurs. The risk is greater when the skin barrier has been damaged and smaller when the skin is healthy. Dermatological studies have demonstrated that mixed isothiazolinone concentrations below 20 ppm may cause sensitisation and that allergic reactions can be provoked in sensitized persons even with concentrations in the range of 7-15 ppm active isothiazolinones.

The isothiazolinones are a group of heterocyclic sulfur-containing compounds. In general all are electrophilic molecules containing an activated N-S bond that enables them with nucleophilic cell entities, thus exerting biocidal activity. A vinyl activated chlorine atom makes allows to molecule to exert greater antimicrobial efficiency but at the same time produces a greater potential for sensitisation.

Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn*:

- ▶ The strongest sensitisers are the chlorinated isothiazolinones.
- ▶ There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones.
- ► There appears to be no immunological cross reaction between non-chlorinated isothiazolinones and chlorinated isothiazolinones.
- Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated isothiazolinones.
- ▶ By avoiding the use of chlorinated isothiazolinones, the potential to induce sensitisation is greatly reduced.
- ▶ Despite a significant percentage of the population having been previously sensitised to chlorinated and non-chlorinated species, it is likely that careful and judicious use of non-chlorinated isothiazolinones will result in reduced risk of allergic reactions in those persons.
- Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal care products, it is only with the passage of time that proof of their safety in use or otherwise will become available.
- * B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196

Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in Salmonella typhimunium strains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells in vitro and of cytogenetic effects and DNA-binding in vivo. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds.

A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed.

Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses

ELISAONE Cell Lysis Buffer	TOXICITY	IRRITATION
(5X)	Not Available	Not Available
	TOXICITY	IRRITATION
sodium chloride	Dermal (rabbit) LD50: >10000 mg/kg ^[1]	Eye (rabbit): 10 mg - moderate
sodium chioride	Oral (rat) LD50: 3000 mg/kg ^[2]	Eye (rabbit):100 mg/24h - moderate
		Skin (rabbit): 500 mg/24h - mild
	TOXICITY	IRRITATION
potassium chloride	Oral (rat) LD50: 2600 mg/kg ^[2]	Eye (rabbit): 500 mg/24h - mild
	TOXICITY	IRRITATION
sodium phosphate, dibasic, heptahydrate	Oral (rat) LD50: 12930 mg/kg ^[2]	Eye (rabbit): 500 mg/24h - mild
noptanyarato		Skin (rabbit): 500 mg/24h - mild
	TOXICITY	IRRITATION
potassium phosphate, monobasic	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available
monosasio	Oral (rat) LD50: >500 mg/kg ^[1]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >300 mg/kg ^[1]	Eye (rabbit): 16.0/110.0
	Inhalation (rat) LC50: >0.58 mg/l/4h*0 ^[2]	Eye (rabbit): 66.5/110 SEVERE
sodium acid pyrophosphate	Oral (rat) LD50: >1000 mg/kg ^[1]	moderately irritating
		practically non-irritating
		Skin (rabbit): 0.0/8.0
		Skin (rabbit): 0.7/8.0 - slight
	TOXICITY	IRRITATION
sodium fluoride	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 20 mg/24h-moderate
	Oral (rat) LD50: >25<2000 mg/kg ^[1]	
	TOXICITY	IRRITATION
sodium orthovanadate	Oral (rat) LD50: 330 mg/kg ^[2]	Not Available

Chemwatch: **5229-73**Page **9** of **14**Issue Date: **21/11/2016**Version No: **2.1.1.1**Print Date: **06/11/2017**

ELISAONE Cell Lysis Buffer (5X)

p-tert-octylphenol ethoxylate	TOXICITY	IRRITATION
	Oral (rat) LD50: 1800 mg/kg ^[2]	Eye (rabbit): 1 mg - moderate
		Skin (human): 2 mg/3d -I - mild
isothiazolinones, mixed	TOXICITY	IRRITATION
	Oral (rat) LD50: 53 mg/kg ^[2]	Not Available
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity	v 2 * Value obtained from manufacturer's SDS. Unless otherwise specified
Logona.	data extracted from RTECS - Register of Toxic Effect of chemical Substances	

SODIUM PHOSPHATE, DIBASIC, HEPTAHYDRATE	for anhydrous material	
POTASSIUM PHOSPHATE, MONOBASIC	No data of toxicological significance identified in literature search.	
SODIUM FLUORIDE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.	

Octoxvnols:

Octoxynols of various chain lengths as well as octoxynol salts and organic acids function in cosmetics either as surfactants-emulsifying agents, surfactants-cleansing agents, surfactant-solubilizing agents, or surfactants-hydrotropes in a wide variety of cosmetic products at concentrations ranging from 0.0008% to 25%, with most less than 5.0%. The octoxynols are chemically similar to nonoxynols.. Long-chain nonoxynols (9 and above) were considered safe as used, whereas short-chain nonoxynols (8 and below) were considered safe as used in rinse-off products and safe at concentrations less than 5% in leave-on formulations. Acute exposure of hamsters to Octoxynol-9 by bronchopulmonary lavage produced pneumonia, pulmonary edema, and intra-alveolar hemorrhage. Octoxynol-9 at doses over 1 g/kg was toxic in rats and in mice in acute oral toxicity studies. No significant effects were noted in short-term oral studies of Octoxynol-9 in rats, in subchronic oral studies of Octoxynol-40 in rats and dogs, or in chronic oral studies of Octoxynol-40 in rats. The intraperitoneal LD50 of Octoxynol-9 in rats and mice was around 100 mg/kg. In skin irritation studies, octoxynols ranged from nonirritating to moderately irritating. Octoxynols were not ocular irritants in one rabbit study, but in others there was ocular irritation. No immune system toxicity in CF-1 female mice was noted following the intraperitoneal injection of Octoxynol-9 followed by subcutaneous immunization with sheep red blood cells (SRBCs). Octoxynol-9 produced no humoral and cell-mediated immune responses, or autoimmune response in mice. In the Ames test, Octoxynol-1 was not mutagenic with and without metabolic activation nor was Octoxynol-9 clastogenic. Results for Octoxynol-9 were negative in the following assays: unscheduled DNA synthesis, hypoxanthine guanine phosphoribosyl transferase mutation assay, malignant transformation assay. DNA alkaline unwinding test. and mouse lymphoma thymidine kinase locus forward mutation assay. Ethoxylated alkylphenols are generally considered to be estrogenic in that they mimic the effects of estradiol. Dermal exposure at three dose levels of rats to Octoxynol-9 failed to induce any malformations by category (external, visceral, or skeletal) or by individual anatomical location that were different from controls at statistically significant level. An increased incidence of a vestigial thoracic rib was observed in all dose groups. Octoxynol-9 also did not induce developmental toxicity (number of viable litters, live-born per litter, percentage survival, birth weight per pup, and weight gain per pup) in female specific pathogen-free CD-1 mice dosed daily by gavage on gestation days 6 through 13. No reproductive toxicity was seen in male albino rats which received 5% Octoxynol-40 in the diet daily for 3 months; however, in an in vitro test, Octoxynol-9 (0.24 mg/ml) totally immobilized all human spermatozoa within 20 s. Women who used Nonoxynol-9 or Octoxynol-9 as spermicides, but who did become pregnant, did not have an increase in the overall risk of fetal malformations. In a human skin irritation study, formulations containing 2.0% Octoxynol-9 were classified as moderately irritating and minimally irritating, respectively, in a 24-h single-insult, occlusive patch test. Octoxynol-9 (1.0%) was classified as a nonirritant in a clinical study of nine subjects patch tested for 4 consecutive days. The skin sensitization potential of Octoxynols-1, -3, -5, -9, and -13 was evaluated using 50 subjects. Octoxynol-1 induced sensitization in two subjects; all other results were negative. No sensitization was observed in the following studies: 8.0% Octoxynol-9 in 103 subjects, 0.5% Octoxynol-9 in 102 subjects, and 0.1% Octoxynol-9 in 206 subjects. Concerns about even trace levels of 1.4-dioxane, ethylene oxide, or unreacted C9 led to the recommendation that levels be limited. Concerns about the ocular irritancy of short-chain octoxynols led to a recommendation that they should not be used in products that will be used in the area surrounding the eyes. A limitation on the use concentration for short-chain octoxynols (8 and below) arose from consideration of the skin sensitization potential of octoxynols and the recognition that the short-chain octoxynols could be absorbed into the skin more than the long-chain octoxynols. Overall, based on the available data, it was concluded that long-chain octoxynols (9 and above) are safe as used, whereas short-chain octoxynols (8 and below) are safe as used in rinse-off products and safe at concentrations less than 5% in leave-on formulations.

P-TERT-OCTYLPHENOL ETHOXYLATE

International Journal of Toxicology Vol 23 pp 59-111 Jan 2004

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult diagnose ACD to these compounds by patch testing. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41

Chemwatch: 5229-73 Page 10 of 14 Issue Date: 21/11/2016 Version No: 2.1.1.1

ELISAONE Cell Lysis Buffer (5X)

Print Date: 06/11/2017

>20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin). AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE vields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

ISOTHIAZOLINONES, MIXED

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's gedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

SODIUM CHLORIDE & SODIUM PHOSPHATE,

SODIUM FLUORIDE &

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

SODIUM CHLORIDE & SODIUM FLUORIDE

DIBASIC, HEPTAHYDRATE &

ISOTHIAZOLINONES, MIXED

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

SODIUM CHLORIDE & ISOTHIAZOLINONES, MIXED

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis

POTASSIUM CHLORIDE & ISOTHIAZOLINONES, MIXED

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce coniunctivitis

Acute Toxicity	✓	Carcinogenicity	0
Skin Irritation/Corrosion	✓	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	0
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

No significant acute toxicological data identified in literature search.

Leaend:

X - Data available but does not fill the criteria for classification

– Data available to make classification

Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

ELISAONE Cell Lysis Buffer (5X)	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
sodium chloride	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1000mg/L	4

Issue Date: 21/11/2016 Chemwatch: 5229-73 Page 11 of 14 Version No: 2.1.1.1 Print Date: 06/11/2017

ELISAONE Cell Lysis Buffer (5X)

	EC50	48	Crustacea	402.6mg/L	4
	EC50	96	Algae or other aquatic plants	2430mg/L	4
	NOEC	6	Fish	0.001mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	29.8000mg/L	4
potassium chloride	EC50	48	Crustacea	83mg/L	4
	EC50	96	Algae or other aquatic plants	1337mg/L	4
	NOEC	48	Crustacea	240.45mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
sodium phosphate, dibasic, heptahydrate	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
potassium phosphate, monobasic	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
sodium acid pyrophosphate	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	51mg/L	2
	EC50	48	Crustacea	58mg/L	4
sodium fluoride	EC50	96	Algae or other aquatic plants	181mg/L	4
	BCF	240	Fish	5mg/L	4
	NOEC	504	Fish	4mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
sodium orthovanadate	LC50	96	Fish	16.5mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
p-tert-octylphenol ethoxylate	LC50	96	Fish	4.5mg/L	4
	BCFD	336	Algae or other aquatic plants	0.1mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
isothiazolinones, mixed	Not Available	Not Available	Not Available	Not Available	Not Available

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

 $\label{thm:lemma$

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
sodium chloride	LOW	LOW
potassium chloride	HIGH	HIGH
sodium fluoride	LOW	LOW
sodium orthovanadate	HIGH	HIGH
p-tert-octylphenol ethoxylate	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
sodium chloride	LOW (LogKOW = 0.5392)
potassium chloride	LOW (LogKOW = -0.4608)
sodium fluoride	LOW (BCF = 6.4)
sodium orthovanadate	LOW (LogKOW = 2.229)
p-tert-octylphenol ethoxylate	HIGH (LogKOW = 4.863)

Chemwatch: 5229-73

Page 12 of 14

Issue Date: 21/11/2016

Version No: 2.1.1.1

Print Date: 06/11/2017

ELISAONE Cell Lysis Buffer (5X)

Mobility in soil

Ingredient	Mobility
sodium chloride	LOW (KOC = 14.3)
potassium chloride	LOW (KOC = 14.3)
sodium fluoride	LOW (KOC = 14.3)
sodium orthovanadate	LOW (KOC = 48.64)
p-tert-octylphenol ethoxylate	LOW (KOC = 699.2)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ► If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ▶ Reuse
- ► Recycling
- Product / Packaging disposal

► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

NO

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

SODIUM CHLORIDE(7647-14-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule

US TSCA Chemical Substance Inventory - Interim List of Active Substances

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

POTASSIUM CHLORIDE(7447-40-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US TSCA Chemical Substance Inventory - Interim List of Active Substances

SODIUM PHOSPHATE, DIBASIC, HEPTAHYDRATE(7782-85-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Massachusetts - Right To Know Listed Chemicals	US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive)	
US - Pennsylvania - Hazardous Substance List	Rule	
US CWA (Clean Water Act) - List of Hazardous Substances	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory	
	US TSCA Chemical Substance Inventory - Interim List of Active Substances	

Chemwatch: 5229-73 Page 13 of 14 Issue Date: 21/11/2016 Version No: 2.1.1.1 Print Date: 06/11/2017

ELISAONE Cell Lysis Buffer (5X)

US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) US TSCA Chemical Substance Inventory - Interim List of Active Substances Rule US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory SODIUM ACID PYROPHOSPHATE(7758-16-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) US TSCA Chemical Substance Inventory - Interim List of Active Substances US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory SODIUM FLUORIDE(7681-49-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS International Agency for Research on Cancer (IARC) - Agents Classified by the IARC US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Monographs Contaminants US - Alaska Limits for Air Contaminants US - Washington Permissible exposure limits of air contaminants US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants (CRELs) US - Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration, Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift US - California Permissible Exposure Limits for Chemical Contaminants US - Hawaii Air Contaminant Limits US ACGIH Threshold Limit Values (TLV) US - Idaho - Limits for Air Contaminants US ACGIH Threshold Limit Values (TLV) - Carcinogens US - Massachusetts - Right To Know Listed Chemicals US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs) US - Michigan Exposure Limits for Air Contaminants US CWA (Clean Water Act) - List of Hazardous Substances US - Minnesota Permissible Exposure Limits (PELs) US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule US - Oregon Permissible Exposure Limits (Z-1) US - Oregon Permissible Exposure Limits (Z-2) US NIOSH Recommended Exposure Limits (RELs)

SODIUM ORTHOVANADATE(13721-39-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US TSCA Chemical Substance Inventory - Interim List of Active Substances

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US OSHA Permissible Exposure Levels (PELs) - Table Z2

US EPCRA Section 313 Chemical List

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

P-TERT-OCTYLPHENOL ETHOXYLATE(9002-93-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule

US TSCA Chemical Substance Inventory - Interim List of Active Substances

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

ISOTHIAZOLINONES, MIXED(55965-84-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Not Applicable

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Immediate (acute) health hazard	Yes
Delayed (chronic) health hazard	No
Fire hazard	No
Pressure hazard	No
Reactivity hazard	No

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

Name	Reportable Quantity in Pounds (lb)	Reportable Quantity in kg
Sodium phosphate, dibasic	5000	2270
Sodium fluoride	1000	454

State Regulations

US. CALIFORNIA PROPOSITION 65

None Reported

National Inventory	Status
Australia - AICS	N (isothiazolinones, mixed)
Canada - DSL	Υ
Canada - NDSL	N (sodium orthovanadate; sodium phosphate, dibasic, heptahydrate; potassium chloride; potassium phosphate, monobasic; sodium acid pyrophosphate; isothiazolinones, mixed; sodium fluoride; p-tert-octylphenol ethoxylate; sodium chloride)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	N (isothiazolinones, mixed; p-tert-octylphenol ethoxylate)
Japan - ENCS	N (sodium acid pyrophosphate; p-tert-octylphenol ethoxylate)
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	N (sodium orthovanadate)
USA - TSCA	N (isothiazolinones, mixed)

Chemwatch: 5229-73 Page 14 of 14 Issue Date: 21/11/2016 Version No: 2.1.1.1 Print Date: 06/11/2017

ELISAONE Cell Lysis Buffer (5X)

Y = All ingredients are on the inventory Legend: N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
sodium chloride	7647-14-5, 14762-51-7, 16887-00-6
sodium acid pyrophosphate	7758-16-9, 10101-84-5, 68915-31-1
isothiazolinones, mixed	55965-84-9, 96118-96-6

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection

OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.